1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
/*
* i2c.v
*
* Copyright (C) 2018, 2019 Mind Chasers Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* function: I2C slave controller for communicating with internal controller
*
*/
`timescale 1ns /10ps
module i2c(
input rstn,
input clk,
// external I2C I/O
input scl_i, // serial clock
output scl_o, // serial clock out
output scl_oe, // serial clock output enable
input sda_i, // serial data in
output reg sda_o, // serial data out
output reg sda_oe, // serial data output enable
// shared memory and controller data output
output [7:0] mem_do,
// dedicated memory interface
output [10:0] mem_ad,
output mem_ce,
output reg mem_we,
input [7:0] mem_di,
// dedicated controller write interface
output reg cont_we,
output cont_done,
// Controller->FIFO input interface
input tx_fifo_empty, // use for control and pass as msbit of data
input [6:0] fifo_di, // data from FIFO to transmit on I2C
output reg fifo_re
);
localparam CONT_SEL = 7'h10,
DPRAM_SEL = 7'h20,
SCI_SEL = 7'h30;
// slave-related signals
reg scl_high, scl_low;
reg [4:0] bit_cnt; // cnt the bits received
reg start; // falling SDA while SCL is high
reg stop; // rising SDA while SCL is high
reg run; // assert while running and counting bits
reg rwn; // follows address
reg [6:0] dev_ad; // 7-bit device address
reg [7:0] addr; // address
reg [7:0] d; // data received from external i2c controller during an I2C write
wire target_sel, dpram_sel, cont_sel;
reg scl_i_m1, scl_i_m2, sda_i_m1; // delayed versions of the inputs
reg ack;
wire [7:0] i_di; // internal data in muxed from external sources (e.g., DPRAM and controller)
assign i_di = dpram_sel ? mem_di : { tx_fifo_empty, fifo_di };
// master-related signals
//reg halt; // assert if we lose arbitration, detect a zero in place of a one
assign scl_oe = 1'b0;
// since it's open drain, never drive the outputs high
assign scl_o = 1'b0;
// slave interface
/*
debounce and capture the asynch inputs
delayed signals, by default, they're 1 since they're open drain
*/
always @(posedge clk or negedge rstn)
begin
if (!rstn)
begin
scl_i_m1 <= 1'b1;
scl_i_m2 <= 1'b1;
sda_i_m1 <= 1'b1;
end
else
begin
scl_i_m1 <= scl_i;
scl_i_m2 <= scl_i_m1;
sda_i_m1 <= sda_i;
end
end
/*
create a one shot when scl is first stable high
use this to register inputs
*/
always@(posedge clk or negedge rstn)
begin
if (!rstn)
scl_high <= 1'b0;
else if (scl_i && scl_i_m1 && ~scl_i_m2)
scl_high <= 1'b1;
else
scl_high <= 1'b0;
end
/*
create a one shot when scl is first stable low
use this to register outputs
*/
always@(posedge clk or negedge rstn)
begin
if (!rstn)
scl_low <= 1'b0;
else if ( !scl_i && !scl_i_m1 && scl_i_m2)
scl_low <= 1'b1;
else
scl_low <= 1'b0;
end
/*
one shot start/restart bit, sda 1 to 0 anytime while scl is high
*/
always @(posedge clk or negedge rstn)
begin
if (!rstn)
start <= 1'b0;
else if ( scl_i == 1'b1 && scl_i_m1 == 1'b1 && sda_i == 1'b0 && sda_i_m1 == 1'b1 )
start <= 1'b1;
else
start <= 1'b0;
end
/*
one shot stop bit, sda 0 to 1 anytime while scl is high
*/
assign cont_done = stop & ~rwn;
always @(posedge clk or negedge rstn)
begin
if (!rstn )
stop <= 1'b0;
else if ( scl_i == 1'b1 && scl_i_m1 == 1'b1 && sda_i == 1'b1 && sda_i_m1 == 1'b0 )
stop <= 1'b1;
else
stop <= 1'b0;
end
/*
This I2C block runs between start and stop while run == 1
*/
always @(posedge clk or negedge rstn)
begin
if (!rstn)
run <= 1'b0;
else if ( start )
run <= 1'b1;
else if ( stop )
run <= 1'b0;
end
/*
bit_cnt indicates the state of the i2c transfer:
start/stop act as synchronous resets
otherwise, bit_cnt can change when scl is low
31 (1F): reserved for first cycle after start / idle state
0:6: dev_ad
7: rwn, ACK is clocked out
8:
9:16: if rwn == 0 addr, else d, ACK is clocked out on 16
17: ( restart to 9 if read )
18:25: write data, ack write data is clocked out on 25
26: ( restart to 18 for write data )
*/
always @(posedge clk or negedge rstn)
begin
if ( !rstn )
bit_cnt <= 5'h1f;
else if ( start || stop )
bit_cnt <= 5'h1f;
else if ( run && scl_low )
begin
if ( rwn && bit_cnt == 5'd17 )
bit_cnt <= 5'd9;
else if ( bit_cnt == 5'd26 )
bit_cnt <= 5'd18;
else
bit_cnt <= bit_cnt + 1;
end
end
/*
shift device address (dev_ad) into the module from the i2c bus
*/
always @(posedge clk or negedge rstn)
begin
if ( !rstn )
dev_ad <= 7'h0;
else if ( stop )
dev_ad <= 7'h0;
else if ( run && scl_high && bit_cnt <= 5'h6 )
dev_ad <= { dev_ad[5:0], sda_i };
end
/*
shift I2C memory addr into the module from the i2c bus during first cycle
auto increment on subsequent byte reads during same I2C cycle
*/
always @(posedge clk or negedge rstn)
begin
if (!rstn)
addr <= 8'h00;
else if ( run && scl_high)
begin
if ( !rwn && bit_cnt >= 5'd9 && bit_cnt <= 5'd16 )
addr <= { addr[6:0], sda_i };
else if ( (rwn && bit_cnt == 5'd17) || (!rwn && bit_cnt == 5'd26) )
addr <= addr + 1;
end
end
/*
* shift write data (d) into the module from the i2c bus.
*/
always @(posedge clk or negedge rstn)
begin
if (!rstn)
d <= 8'ha5;
else if ( run && scl_high && !rwn && !start && bit_cnt >= 5'd18 && bit_cnt < 5'd26 )
d <= { d[6:0], sda_i };
end
assign dpram_sel = ( dev_ad == DPRAM_SEL ) ? 1 : 0;
assign cont_sel = ( dev_ad == CONT_SEL ) ? 1 : 0;
assign target_sel = cont_sel | dpram_sel;
/*
register ack during I2C reads when bit_cnt == 17
*/
always @(posedge clk or negedge rstn)
begin
if ( !rstn )
ack <= 1'b0;
else if ( run && scl_high && rwn && bit_cnt == 5'd17 )
ack <= ~sda_i;
end
/*
register rwn bit
*/
always @(posedge clk or negedge rstn)
begin
if ( !rstn )
rwn <= 1'b1;
else if ( stop )
rwn <= 1'b1;
else if ( run && scl_high && bit_cnt == 5'd7 )
rwn <= sda_i;
end
/*
sda_oe logic, note that the bit_cnt will be changing simultaneously, so it's one behind
*/
always @(posedge clk or negedge rstn)
begin
if ( !rstn )
begin
sda_oe <= 1'b0;
sda_o <= 1'b1;
end
else if ( stop )
begin
sda_oe <= 1'b0;
sda_o <= 1'b1;
end
else if ( scl_low )
begin
// ack the first byte written by master if it's addressed to our I2C slave
if ( target_sel && bit_cnt == 5'd7 )
begin
sda_oe <= 1'b1;
sda_o <= 1'b0;
end
// ack write address
else if ( target_sel && rwn == 1'b0 && bit_cnt == 5'd16 )
begin
sda_oe <= 1'b1;
sda_o <= 1'b0;
end
// ack write data
else if ( target_sel && rwn == 1'b0 && bit_cnt == 5'd25 )
begin
sda_oe <= 1'b1;
sda_o <= 1'b0;
end
// drive read data
else if ( target_sel && rwn == 1'b1 && bit_cnt >= 5'd8 && bit_cnt <=5'd15 ) // xmt data for read cycle
begin
sda_oe <= 1'b1;
sda_o <= i_di[7-bit_cnt[2:0]];
end
// drive data for first bit of burst read cycle, multi-byte if we get an ack
// if no ack, then the burst read or single read is done
else if ( target_sel && rwn == 1'b1 && ack && bit_cnt == 5'd17 )
begin
sda_oe <= 1'b1;
sda_o <= i_di[7];
end
else
begin
sda_oe <= 1'b0;
sda_o <= 1'b1; // don't care
end
end
end
/* DPRAM Control */
assign mem_ad = {3'b0, addr};
assign mem_ce = 1'b1;
/*
driver: mem_do
shared between both cont and dpram interfaces
drive addr for first byte since this is the controller cmd
*/
assign mem_do = ( bit_cnt <= 5'd17 ) ? addr : d;
// mem_we bit
always @(posedge clk or negedge rstn)
begin
if ( !rstn )
mem_we <= 1'b0;
else if ( run && scl_high && dpram_sel && !rwn && bit_cnt == 5'd26 )
mem_we <= 1'b1;
else
mem_we <= 1'b0;
end
// cont_we bit is asserted at the end of both command and data bytes
always @(posedge clk or negedge rstn)
begin
if ( !rstn )
cont_we <= 1'b0;
else if ( run && scl_high && cont_sel && !rwn && (bit_cnt == 5'd26 || bit_cnt == 5'd17) )
cont_we <= 1'b1;
else
cont_we <= 1'b0;
end
/*
* drive: fifo_re
* Stop asserting during a burst if we don't get an ACK (use sda_i for real-time ACK)
*/
always @(posedge clk or negedge rstn)
begin
if ( !rstn )
fifo_re <= 1'b0;
else if ( run && scl_high && cont_sel && rwn && !tx_fifo_empty && ( bit_cnt == 5'd8 || ( bit_cnt == 5'd17 && !sda_i ) ) )
fifo_re <= 1'b1;
else
fifo_re <= 1'b0;
end
endmodule
|